H(t)=-16(t^2-2.25)

Simple and best practice solution for H(t)=-16(t^2-2.25) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-16(t^2-2.25) equation:



(H)=-16(H^2-2.25)
We move all terms to the left:
(H)-(-16(H^2-2.25))=0
We calculate terms in parentheses: -(-16(H^2-2.25)), so:
-16(H^2-2.25)
We multiply parentheses
-16H^2+36
Back to the equation:
-(-16H^2+36)
We get rid of parentheses
16H^2+H-36=0
a = 16; b = 1; c = -36;
Δ = b2-4ac
Δ = 12-4·16·(-36)
Δ = 2305
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{2305}}{2*16}=\frac{-1-\sqrt{2305}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{2305}}{2*16}=\frac{-1+\sqrt{2305}}{32} $

See similar equations:

| 5x+40=3x-2 | | 48+20x=-6(20x-8 | | -21+2n=-5n | | 10.5=1.8^x | | U=0.4-1.2V=-5+0.5u | | 1/8x=32 | | 0.003x-0.2=0.1 | | c+0.4c(0.5)^(-1)+0.15c(0.5)^(-2)=1 | | 15x=(98*43)-657 | | 4)5r−2=6r+5 | | 0.03x-0.02=0.01 | | -7b+9+3b-7=6 | | 10-9=1x | | 35x=5,500 | | 120+x/2-6x=65 | | 6(20-x)=3x*2x | | 576=x^2+14x | | 75n=11.9 | | 64=0,5(12,8)h | | 17w-8w=72 | | 17w-8w@=72 | | -7b+9+3b-7=46 | | 8+2c=5c+16 | | 6x+3(2x+4)=54 | | 38-14=44x | | 70+56+2x=360 | | 10=v/3+9 | | 5x-4=3+9 | | 4y-5y+20=9 | | 2c+45-7c-615=2 | | x/6=x/2 | | 3(2x−1)+2=5x |

Equations solver categories